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Abstract

This paper presents the extension of a two-dimensional model that, recently appeared in literature, deals with freely

vibrating laminated plates. The extension takes into account the corresponding theory describing the dynamic of freely

vibrating multilayered doubly curved shells. The relevant governing differential equations, associated boundary con-

ditions and constitutive equations are derived from one of Reissner�s mixed variational theorems. Both the governing

differential equations and the related boundary conditions are presented in terms of resultant stresses and displace-

ments. In spite of the multi-layer nature of the shell, the theory is developed as if the shell were virtually made of a single

layer. This choice does not limit the performances of the model, which are comparable to the corresponding three-

dimensional theory. This ability is accomplished by an appropriate global expansion of the relevant kinetic and stress

quantities, through the thickness of the multilayered shell. The mentioned expansion is realized by a novel selection of

global piecewise-smooth functions. Numerical tests illustrate the performance of the model with respect to several

elements subjected to a class of simply supported boundary conditions: plates, circular cylindrical shells, spherical and

saddle-shape laminates. The model is first tested by comparing its resulting eigen-parameters, with those few existing of

exact or approximate three-dimensional models and, finally, new results are provided for several geometrical and

material characteristics for plates and shells.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With respect to the classification that can be done for the theories of freely vibrating laminated plates,

the relevant theories describing the dynamic behavior of laminated shells are subjected to further com-

plications. The additional complexities introduced by the curvature, even in Love�s classical first approxi-
mation, can deal with several kinds of sub-theories that contain or neglect different effects (Leissa, 1973).
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However, if sub-models are left out of considerations the two-dimensional theories concerned with shells,

could be classified in classical shell theories (CST) (Leissa, 1973), uniform shear deformable shell theories

(USDST) (Leissa, 1973; Reddy, 1984) and higher-order shear deformable shell theories (HSDST) (Bhi-

maraddi, 1984; Reddy and Liu, 1985). The three-dimensional theory has also been taken into account for
certain classes of boundary conditions, geometries and material arrangements from other investigators

(Bhimaraddi, 1991; Fan and Zhang, 1992; Soldatos, 1994; Huang, 1995; Ye and Soldatos, 1994; Wu et al.,

1996). These latter works provide numerical results that can be used as benchmarks for the validity of

corresponding dynamic analysis of doubly curved shells when approximated two-dimensional theories are

used.

As far as the aforementioned two-dimensional theories are concerned it is popularly intended that the

acronyms (CST, USDST and HSDST) refer to those models describing in a global sense (through the whole

thickness of the laminate) the related assumptions in the frame of the method of the hypotheses. However,
although these theories are intended in a global sense the same assumption can also be made through the

whole thickness of the laminate at a layer-by-layer level. In the first case the continuity requirements (for

displacement and related transverse stresses) could be violated (Bhimaraddi, 1984; Reddy and Liu, 1985;

Timarci and Soldatos, 1995; Messina and Soldatos, 1999a,b) whilst in the second case the continuity re-

quirements can be imposed at each interface between the bonded layers (Di Sciuva, 1987; Di Sciuva and

Carrera, 1992; Soldatos and Timarci, 1993; Timarci and Soldatos, 1995; Xavier et al., 1995) and, therefore,

the continuities can be fulfilled. The second case deserves particular attention due to certain recent de-

velopments (Messina and Soldatos, 1999a,b, 2002). These works, not only substantiated the need of the
continuity requirements but they also showed the importance of further refining certain shape functions

which could better fit the actual in-plane displacements and the interested transverse stresses.

The application of a theory at a layer-level and its subsequent expansion at a global level is mainly

complicated by the basic assumption of all the aforementioned two-dimensional theories: they are dis-

placement-based theories and consequently after assuming a global displacement field the constitutive

equations naturally lead to discontinuous transverse stresses in a multilayered structure. For this reason,

algebraic/differential manipulations have to be necessarily introduced into the model to fulfill the appro-

priate continuity requirements at the interfaces to obtain an appropriate global theory. This can not only
yield a complicate displacement-based theory but it also makes the extension to a higher number of degrees

of freedom not immediate.

Mixed-based approach could overcome such difficulties because displacements and stresses can be in-

dependently assumed. In this respect Carrera (1999a,b) extended the application of Reissner�s variational
theorem (Reissner, 1986) to corresponding dynamic studies for multilayered shells as well as taking into

consideration the effects of the normal stresses. In these works Legendre polynomials up to the fourth-order

(LW4 model) were used to describe transverse stresses and displacements within each (say kth) layer. The
continuity requirements were explicitly introduced thus yielding a formulation depending on the dis-
placement and stress unknowns for each layer, therefore, making up a model depending on the number of

layers. Messina (2001) investigated the possibility of using Reissner�s work (1986) to make up a model that

could be independent from the complexity of the number of layers involved. In this attempt Messina (2001),

did not completely fulfill the continuity requirements. However, the comparisons with other global dis-

placement-based theories suggested a certain superiority of the relevant mixed model (M2D) for dealing

with vibrating multilayered plates. Such superiority could be attributed to the more physical fulfillments

that the mixed model permitted. After this first test, Messina (2002a) generalized the idea of making up a

theory that would separate the mathematical model of a freely vibrating multilayered plate (M3D) from the
functional base. Namely, Messina (2002a) introduced a global theory based on Reissner�s theorem (1986)

that could be adopted with any suitable functional base. Once the theory was introduced, a novel functional

base was separately provided. This latter was constituted by global piecewise-smooth functions (GPSFs)

that were able to fulfill the external boundary conditions and the interlaminar continuity requirements. An
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excellent numerical/computational performance resulted from the conjunction between M3D and the

GPSFs. Indeed, the global theory developed by Messina (2002a) was able to contain previous full layerwise

theories as well as three-dimensional results were efficiently and stably obtainable for several geometries

and material arrangements. The benefits in using GPSFs rather than classical functional bases were also
illustrated in Messina (2002b).

This work intends to generalize the previously presented M3D theory (Messina, 2002a) for plates to the

case of doubly curved shells. No restriction regarding stresses or displacements is made. The governing

equations are obtained in terms of resultant stresses and displacements for monoclinic layers. In order to

verify the accuracy of the present model the equations are solved once they are tailored for orthotropic

layers of multilayered doubly curved shells with edges subjected to a simply supported boundary condition.

The shell is adapted for several geometries (plates, circular cylindrical shells, spherical and saddle-shape

laminates) and all the relevant results are compared with those few existing three-dimensional results. The
comparisons make clear that the present theory, regardless of its two-dimensional nature, is able to effi-

ciently approach the three-dimensional results for the majority of the two-dimensional elements used in

several engineering applications. Therefore, based on the performance shown by these comparisons, new

results are provided with respect to certain fiber reinforced materials, which cover a wide area of engi-

neering applications.

2. Theoretical modeling: dynamics of doubly curved shells

Consider a multilayered doubly curved shell (Fig. 1) having a global thickness h measured through the

normal n, which, point-by-point, is perpendicular to the reference surface p12. A curvilinear coordinate

system, located on the reference surface with respect to its orthogonal lines of principal directions, is also

indicated in Fig. 1 ðr;a1 =jr;a1 j; r;a2 =jr;a2 j; nÞ, being ð Þ;x ¼ oð Þ=ox. R1 and R2 are the constant radii of cur-
vature to the reference surface along the a1- and a2-curves, respectively. The fibers-direction can be con-

sidered with respect to the a1-curve and the layers are counted from z < 0. The position vector R of a point

P in the shell corresponds to a position vector r placed on the reference surface as reported in (1).

Fig. 1. Nomenclature and coordinate system of the doubly curved laminated shell.
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Rða1; a2; zÞ ¼ rða1; a2Þ þ znða1; a2Þ: ð1Þ
From Eq. (1) an elementary length in the shell (dLine) (see for example Kraus, 1967; Calcote, 1969) can be

expressed through the following equation:

dLine2 ¼ A2
1h

2
1da2

1 þ A2
2h

2
2da2

2 þ dz2 ð2Þ

being A2
q ¼ r;oaq r;aq first fundamental quantities and hq ¼ 1þ z=Rq. The coordinates elementary surface

(dSur) and volume (dVol) can be obtained through Eq. (2).

The shell is considered as elastically heterogeneous in the thickness direction with a local symmetry with

respect to n. The following form of Hooke�s generalized law gives the local stress–strain relation

r1
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¼
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; ð3Þ

where ðr1; r2; rz; s2z; s1z; s12Þ and ðe1; e2; ez; c2z; c1z; c12Þ are the stress and strain components respectively. The

elastic heterogeneity of the shell through its thickness (h) is established by the elastic constant Cij that are

piecewise continuous.
Based on the displacement field of a point Pða1; a2; zÞ through the adopted curvilinear coordinates

Uða1; a2; zÞ ¼ Uða1; a2; zÞt1 þ V ða1; a2; zÞt2 þ W ða1; a2; zÞn; ð4Þ
where ðt1; t2Þ correspond to tangent unit vectors on the reference surface (i.e. r;a1 =jr;a1 j; r;a2 =jr;a2 j), the
kinetic relations herein considered (Aq;am ¼ 0; q, m ¼ 1, 2) are the following:
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ð5Þ

Under these considerations, the present mixed elastic shell model begins with the following displacement

and stress assumption:

Uða1; a2; z; tÞ ¼ UðzÞ1juða1; a2; tÞj; V ða1; a2; z; tÞ ¼ UðzÞ2jvða1; a2; tÞj;
W ða1; a2; z; tÞ ¼ UðzÞ3jwða1; a2; tÞj; ð6Þ

sða1; a2; z; tÞ2z ¼ WðzÞ1psða1; a2; tÞ2zp; sða1; a2; z; tÞ1z ¼ WðzÞ2psða1; a2; tÞ1zp;
rða1; a2; z; tÞz ¼ WðzÞ3prða1; a2; tÞzp; ð7Þ

where in each single equation, (6), (7), as in the following, the indices (j; p ¼ 1; 2; . . . ;Nu;Nr) are assumed to

be repeated in place of the relevant summation. Moreover, the approximating global functions

(UðzÞ1i;UðzÞ2i;UðzÞ3i, WðzÞ1q;WðzÞ2q;WðzÞ3q) defined through the whole thickness of the shell

ð�1=26 z=h ¼ f6 1=2Þ are intended dimensionless. The two-dimensional displacement and stress com-

ponents are conversely dimensionally consistent with their counterparts.
The approximating global functions are responsible for fulfilling the boundary conditions on the top and

bottom of the plate as well as for satisfying the appropriate interlaminar continuity conditions. Both these
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aspects will be further discussed in Section 3. This section is only devoted to develop a global mixed shell

theory without mentioning anyone of the mathematical characteristics associated with the approximating

global functions. Therefore, the present theory could be conveniently used for any suitable set of global

approximating functions, which might or might not be that suggested in Section 3 of this paper (GPSFs).
Once the related assumptions of the stress and displacement (6), (7) are made, the following variational

statement (8) (Reissner, 1986), tailored for the dynamic case (Carrera, 1999a,b; Messina, 2001, 2002a), can

be used to obtain the governing equations of motion in conjunction with boundary conditions.Z
Vol

rT
inde

ðGÞ
in þ rT

oude
ðGÞ
ou þ drT

ou e
ðGÞ
ou

�
� eðCÞou

�
dVolþ

Z
Vol

q €UUdU
�

þ €VV dV þ €WW dW
�
dVol ¼ 0: ð8Þ

In Eq. (8) the superscript �T� stands for the transpose operator while the superscripts in parentheses (G,

C) state that the relevant strains ðeTou ¼ ðc2z; c1z; ezÞ; eTin ¼ ðe1; e2; c12ÞÞ should be introduced into Eq. (8) by
using the geometric equations (5) and the constitutive equations (3), respectively. Finally, out-of-plane and

in-plane stresses ðrT
ou ¼ ðs2z; s1z; rzÞ; rT

in ¼ ðr1; r2; s12ÞÞ should be considered through the assumed field

equations (7) and the constitutive equations (3), respectively. However, in order to apply the variational

statement (8) the constitutive equations (3) should be adopted in the following equivalent form:
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ð9Þ

from which the in-plane stresses and out-of-plane strains can be expressed as follows:

rin ¼ ðC126 �D � C�1
345D

TÞein þD � C�1
345rou;

eou ¼ C�1
345rou � C�1

345D
Tein:

ð10Þ

Therefore, applying the variational statement (8) according to Eqs. (2), (5)–(7), (10) with the ‘‘G’’-
membership of ein, carrying out the relevant integrations by parts, not reported here for brevity�s sake, with
a view to considering the z-integrations through the whole thickness of the laminate and finally taking into

account the algebraic/differential manipulations suggested in Messina (2002a), governing differential

equations (11), relevant boundary conditions (12) and consistent generalized constitutive equations (13) are

obtained as follows:

dui :
1

A1

oN1i

oa1

þ 1
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oN121i

oa2

� Q1i ¼ q1j;1i€uuj;

dvi :
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þ 1
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� Q2i ¼ q2j;2i€vvj;

dwi :
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oa1

þ 1

A2
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oa2

� Q3i ¼ q3j;3i€wwj:

ð11Þ

Along a1 ¼ astart
1 ; aend

1 for any a2 : N1i ¼ 0 or ui; N122i ¼ 0 or vi; V1i ¼ 0 or wi:

Along a2 ¼ astart
2 ; aend

2 for any a1 : N121i ¼ 0 or ui; N2i ¼ 0 or vi; V2i ¼ 0 or wi:
ð12Þ
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It is interesting to notice the effort that was made in order to present a set of equations (11)–(13) in the

same form as reported in Messina (2002a). In particular, the relevant equations described in Messina

(2002a), for multilayered plates, can be obtained through Eqs. (11)–(13) by substituting the coordinates and

magnitudes of the shell ða1; a2;A1;A2Þ with ðx; y; 1; 1Þ. However, such a correspondence involves the

quantities quoted in (11)–(13) which are more generalized with respect to Messina (2002a). This further
generalization is put forth in the following equations:

ðN1i;N2iÞ ¼
Z h=2

�h=2
ðr1; r2ÞðU1i;U2iÞðh2; h1Þdz;

ðN121i;N122iÞ ¼
Z h=2

�h=2
s12ðU1i;U2iÞðh1; h2Þdz;

ðV1i; V2iÞ ¼
Z h=2

�h=2
U3iðs1zp; s2zpÞðW2p;W1pÞðh2; h1Þdz;

ðQ1i;Q2iÞ ¼
Z h=2

�h=2
ðU0

1ih1h2 � h2U1i=R1;U
0
2ih1h2 � h1U2i=R2ÞðW2p;W1pÞðs1zp; s2zpÞdz;

Q3i ¼
Z h=2

�h=2
U0

3ih1h2W3przp þ U3iðr1h2=R1 þ r2h1=R2Þdz:

ð14Þ

qlm;nq ¼
Z h=2

�h=2
qh1h2UlmUnq dz ð15Þ

as well as in the matrices quoted in (13) (Cij), which are reported in Appendix A and ð Þ0 that indicates
dð Þ=dz. In this respect, the vector on the right-hand-side in (13) is an assembled vector with ordered

corresponding displacement components (6), whilst the vector on the left-hand-side is an assembled vector
of ordered corresponding resultant stresses (14). Thus, based on the definitions regarding the resultant

stresses (14), (15) and on the stiffness terms (Cij in Appendix A), the relevant equations presented by

Messina (2002a) can be obtained by setting ð1=R1; 1=R2Þ ¼ ð0; 0Þ.

3. The global piecewise-smooth functions (GPSfs)

The theory developed in Section 2 has been introduced without mentioning the nature of the global
approximating functions, i.e.:

UðzÞ1i;UðzÞ2i;UðzÞ3i; ðaÞ : for the displacement components;
WðzÞ1i;WðzÞ2i;WðzÞ3i; ðbÞ : for the transverse stress components;

�
ð16Þ
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to which, the responsibility of fulfilling the external boundary conditions (on the top and bottom of the

multilayered shell) and internal ones (continuity requirements at the interlaminar interfaces of the layers

that are considered as perfectly bonded together) is entrusted. This particular task is not immediately

applicable whenever classical approximating functions are used in (16) (that is, Fourier series, Legendre
series or other classes of independent functions (see for example Sansone, 1959; Chihara, 1978). Indeed, the

unknown distributions across the thickness, the problem which is being dealt with, are piecewise smooth.

Therefore, if such an aspect is not taken into account by the approximating functions the convergence could

be compromised by a behavior that is typical of Gibbs phenomenon (the series can oscillate in the

neighborhood of the discontinuities) thus, reducing the performances of the model.

Fig. 2a illustrates a set of three global approximating functions (f ðfÞ1; f ðfÞ2; f ðfÞ3) defined in the global

domain ½f0 ¼ �1=2; f3 ¼ þ1=2
. They were extracted by a complete base made of orthogonal polynomials

Fig. 2. Global and local approximating functional components for a C0-continuous function.
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Fig. 3. Representation of extractable dependent or independent paths of GPSFs.
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and defined SS to recall the essential type boundary conditions in freely vibrating plates as originally used

by Bath (1985) and Dickinson and Di Blasio (1986). If such functions are linearly superimposed in a

wise mathematical sense they could approximate a function f ðfÞ that fulfills the following boundary

conditions:

f ðf0Þ ¼ f ðf3Þ ¼ 0: ð17Þ

If the function f ðfÞ is piecewise smooth in the three different sub-domains ½ðf0; f1Þ; ðf1; f2Þ; ðf2; f3Þ
, the
approximation to f ðfÞ, through the functions of Fig. 2a, is not efficient with respect to the number of
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Fig. 4. Selection of NLðN � 1Þ þ 1 linearly independent GPSFs at an expansion-level N ¼ 3 in NL ¼ 3 sub-domains for displacement

and stress components.
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functions needed. In this regard, the problem could be re-handled through local functional components

(Fig. 2b). However, this would need the introduction of continuity requirements in ðf1; f2Þ thus also

avoiding a global formulation. In this respect, Messina (2002a) raised the question whether the possibility

of extracting a base from Fig. 2b to take into account a global approximation of piecewise smooth
functions exists. The question is admissible because any single local polynomial can be scaled to join the

contiguous ones. The process originates a chain of local functions that constitute a global approximating

function (GPSF). The GPSF would thus be piecewise smooth and an unknown piecewise smooth function

could be globally approximated. With regard to such chains, that are represented as graphs in Fig. 3,

Messina (2002a) also pointed out that there exists an enormous number of chains (Fig. 3a), but, only

NLðN � 1Þ þ 1 are linearly independent (Fig. 3b); being Nð¼ Nu ¼ NrÞ the maximum number used in the

functional expansion and NL the number of sub domains. The patterns indicated in Fig. 3b were used as

global approximating functions in the mixed plate model by Messina (2002a) and an excellent performance
was obtained. Therefore, according to the encouraging results obtained in the mixed plate model developed

in Messina (2002a), the GPSFs are still used in conjunction with the analytical shell model developed in

Section 2 of this work.

Namely, the graph of Fig. 3b has been used to extract, among FF local functional components,

NLðN � 1Þ þ 1 global approximating functions under the guise of components (16a). In this way the GPSFs,

which are obtained by joining FF local functions, are not constrained to fulfill any condition at the

boundaries (top and bottom of the shell). The functional components concerning the transverse stresses

(16b) are also obtained by using the graph of Fig. 3b. However, in this latter case, the local functional
components must be zero at the boundaries in order to nullify the transverse stresses (rou ¼ 0) on the

bottom and top of the shell. Therefore, the extreme local functional components should be SF and FS

functions. Fig. 4 clarifies the nature of the GPSFs (16) herein used when the expansion level is N ¼ 3 in an

arrangement of three sub domains (i.e. layers).

4. Freely vibrating cross-ply shells: numerical results

In this section, the analytical model obtained in Section 2 is tested in conjunction with the GPSFs in-

troduced in Messina (2002a), which are briefly reassumed in Section 3. It is stressed that the GPSFs should

not be considered as the only possible choice. Indeed, in Section 2 a theory dealing with freely vibrat-

ing shells, virtually made of a single layer and having its constant piecewise elastic constant through

the thickness, was developed without restricting the class of global functions that could be used. The
leading characteristic of the theory is that the mathematical difficulty of fulfilling the physical requirements

of the problem (external and internal boundary conditions) belongs to the global approximating functions

(16) and these can be whatever, providing that they are consistent with the mentioned physical require-

ments.

In order to test the good behavior of the analytical model (11)–(15), freely vibrating cross-ply shells,

which are subjected to a certain class of simply supported constraints, are herein taken into account. These

conditions allow the extraction of exact solutions that can be compared with existing ones as evaluated by

others investigators. As far as the three-dimensional simply supported boundary conditions are concerned,
Eq. (18) reports the relevant mathematical expression.

a1 ¼ 0; L1 : V ¼ W ¼ 0; r1 ¼ 0; a2 ¼ 0; L2 : U ¼ W ¼ 0; r2 ¼ 0 ð18Þ

with a convenient metric based on a system of curvilinear coordinates having L1 and L2 as lateral lengths of
the shell and a1;2 starting from a corner where a1;2 ¼ 0.
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Three-dimensional boundary conditions (18) correspond to the following two-dimensional ones in an

approximate sense:

a1 ¼ 0; L1 : vi ¼ wi ¼ 0; N1i ¼ 0; a2 ¼ 0; L2 : ui ¼ wi ¼ 0; N2i ¼ 0: ð19Þ
These latter (19) are exactly fulfilled for cross-ply shells when the following displacement field is taken into

consideration:

uða1; a2; tÞi ¼ Aui � cos mpa1

L1


 �
� sin npa2

L2


 �
� cosðxmntÞ;

vða1; a2; tÞi ¼ Avi � sin mpa1

L1


 �
� cos npa2

L2


 �
� cosðxmntÞ;

wða1; a2; tÞi ¼ Awi � sin mpa1

L1


 �
� sin npa2

L2


 �
� cosðxmntÞ:

8>>>>>>><
>>>>>>>:

ð20Þ

Based on the assumed displacement components of equations (20) put together with Eqs. (11), (13), simi-

larly to Messina (2002a) the following generalized eigenvalue problem (21) can be set to extract the exact

circular frequencies (xmn):

det K
�

� x2
mnM

�
¼ 0: ð21Þ

Eq. (21) was solved once global approximating functions were chosen. In case of GPSFs both U- and W-
functions corresponded to that illustrated in Fig. 4. However, before illustrating the numerical tests it is

stressed that whenever discontinuities are not present in a multilayered plate or shell (for example ho-

mogeneous isotropic or single layer laminates), simple orthogonal polynomials, such as FF and SS bases

(e.g. Messina and Soldatos, 1999a,b) should be used in place of GPSFs as U- and W-functions, respectively.

Here, for brevity�s sake, only the more complicated cases dealing with multilayered plates and shells will be

illustrated. This void should not be retained a limiting factor of the present analysis because single-layer

laminates are particular cases of multilayered ones as Messina (2002b) already illustrated through the

analysis of freely vibrating plates.
With respect to all numerical tests considered, Table 1 constitutes an outline. In particular, it recaps the

relevant non-dimensional frequency parameters (x�) and the material properties used in all the numerical

evaluations. As far as the material constants for Tables 2–5 are concerned, they were identical to the

Table 1

Frequency parameters and material properties

Reference tables x� Elastic constants Element analyzed

Tables 2–4 xR1

ffiffiffiffiffiffiffiffiffiffi
q=E2

p
E1 ¼ 25E2, E2 ¼ E3, G12 ¼ G13 ¼ 0:5E2,

G23 ¼ 0:2E2, m12 ¼ m13 ¼ m23 ¼ 0:25

Multilayered laminates: cylindrical,

spherical and saddle-shape

Table 5 xL1

ffiffiffiffiffiffiffiffiffiffi
q=E2

p
E1 ¼ 25E2, E2 ¼ E3, G12 ¼ G13 ¼ 0:5E2,

G23 ¼ 0:2E2, m12 ¼ 0:25, m31 ¼ 0:03,

m23 ¼ 0:4

Two-layers circular cylindrical shells

Tables 6–10 x
L2
1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

12E1ð1�m12m21Þ

q
Graphite/epoxy AS4/3501-6:

E1 ¼ 14:9E2, E2 ¼ E3,

G12 ¼ G13 ¼ 0:543E2, G23 ¼ 0:328E2,

m12 ¼ m13 ¼ 0:31, m23 ¼ 0:52

Two and three-layers plates and shells

(cylindrical, spherical and saddle-shape)

E-glass/epoxy: E1 ¼ 2:45E2, E2 ¼ E3,

G12 ¼ G13 ¼ 0:48E2, G23 ¼ 0:342E2,

m12 ¼ m13 ¼ 0:23, m23 ¼ 0:462
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Table 2

Frequency parameters, x�, of cross-ply circular cylindrical laminates for different number of layers (h=L1 ¼ 0:1, L1=R1 ¼ L2=R1 ¼ 0:5)

ðm; nÞ: Mode 2 3 4 5 10

M3D

(1,1): I 1.8971 (4) 2.3112 (4) 2.3415 (4) 2.4231 (4) 2.4930 (3)

(1,1): II 18.813 (3) 18.394 (3) 21.545 (3) 20.531 (3) 22.387 (3)

(1,1): III 20.169 (4) 26.051 (3) 22.902 (3) 25.181 (3) 23.694 (3)

(1,2): I 4.4492 (4) 3.7989 (4) 4.9620 (4) 4.4822 (4) 5.3017 (3)

(1,3): I 7.8195 (4) 6.3115 (5) 8.0752 (4) 7.2057 (4) 8.5254 (4)

(2,1): I 4.3485 (4) 5.5914 (4) 4.8493 (4) 5.5428 (4) 5.1853 (3)

(2,2): I 6.0384 (4) 6.3622 (5) 6.5486 (4) 6.6923 (4) 6.9739 (4)

Huang (1995)

(1,1): I 1.8971 2.3112 2.3415 2.4231 2.4930

(1,1): II 18.813 18.574 21.545 20.736 22.387

(1,1): III 20.169 25.781 22.902 24.925 23.694

(1,2): I 4.4492 3.7984 4.9620 4.4822 5.3017

(1,3): I 7.8195 6.3115 8.0752 7.2057 8.5254

(2,1): I 4.3485 5.5914 4.8493 5.5428 5.1853

(2,2): I 6.0384 6.3622 6.5486 6.6923 6.9739

Table 3

First frequency parameters, x�, of cross-ply spherical laminates for different number of layers (h=L1 ¼ 0:1, L1=R1 ¼ L2=R1 ¼ 0:2)

ðm; nÞ 2 3 4 5 10

M3D

(1,1) 4.6240 (4) 5.8425 (4) 5.8072 (4) 6.1092 (4) 6.2295 (3)

(1,2) 10.753 (4) 9.2157 (4) 12.134 (4) 10.982 (4) 13.050 (3)

(1,3) 19.130 (6) 15.383 (4) 19.846 (4) 17.689 (4) 21.042 (4)

(2,1) 10.864 (4) 14.138 (4) 12.189 (4) 14.013 (4) 13.076 (3)

(2,2) 14.909 (4) 15.972 (4) 16.298 (4) 16.791 (4) 17.432 (3)

Huang (1995)

(1,1) 4.6238 5.8423 5.8070 6.1090 6.2293

(1,2) 10.753 9.2156 12.134 10.982 13.050

(1,3) 19.130 15.383 19.846 17.689 21.042

(2,1) 10.864 14.138 12.188 14.013 13.076

(2,2) 14.909 15.972 16.298 16.791 17.432

Table 4

First frequency parameters, x�, of cross-ply saddle-shape laminates for different number of layers (R2 ¼ �R1, h=L1 ¼ 0:1,

L1=R1 ¼ L2=R1 ¼ 0:5)

ðm; nÞ 2 3 4 5 10

M3D

(1,1) 1.7555 (4) 2.1737 (4) 2.2021 (4) 2.2797 (3) 2.3458 (3)

(1,2) 4.4072 (4) 3.6693 (4) 4.8822 (4) 4.3591 (4) 5.2003 (3)

(1,3) 7.8542 (4) 6.2275 (4) 8.0499 (4) 4.1235 (4) 8.4689 (3)

(2,1) 4.4072 (4) 5.5997 (4) 4.8822 (4) 5.5492 (4) 5.2003 (3)

(2,2) 6.0480 (4) 6.2956 (4) 6.5143 (4) 6.6216 (4) 6.9148 (4)

Huang (1995)

(1,1) 1.7576 2.1761 2.2040 2.2819 2.3477

(1,2) 4.4079 3.6706 4.8830 4.3602 5.2011

(1,3) 7.8545 6.2281 8.0503 7.1240 8.4692

(2,1) 4.4077 5.6001 4.8826 5.5495 5.2006

(2,2) 6.0483 6.2959 6.5145 6.6218 6.9151
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constants referring to those few existing results used for the comparisons. Whilst, for Tables 6–10, dealing
with new results, the elastic constants were chosen among certain fiber reinforced materials used in several

engineering applications. This latter choice was addressed towards two materials that are character-

ized by an extremely anisotropic (axial to transverse) module (graphite/epoxy: AS4/3501-6) and a lesser

Table 5

First frequency parameters, x�, of cross-ply [0�/90�], circular cylindrical shells for different R2=L1 and h=L1 ratios (m ¼ n ¼ 1, L2 ¼ L1)

h=L1 R2=L1 Ye and Soldatos

(1994)

Wu et al.

(1996)a
M3D, N

2 4 6

0.05 1 0.79316 0.79307 0.79343404 0.79322115 0.79322115

5 0.49346 0.49331 0.49335600 0.49335352 0.49335352

10 0.47959 0.47948 0.47950803 0.47951734 0.47951734

0.1 1 1.06973 1.06875 1.07020 1.06973 1.06973

5 0.90616 0.90573 0.90605 0.90617 0.90617

10 0.89778 0.89740 0.89763 0.89778 0.89778

0.15 1 1.34537 1.34070 1.34565 1.34534 1.34534

5 1.24524 1.24210 1.24463 1.24523 1.24523

10 1.23707 1.23413 1.23644 1.23707 1.23707

a e6-order solution.

Table 6

First frequency parameters, x�, of cross-ply square laminated plates for different h=L1 ratios

h=L1 ðm; nÞ
(1,1) (1,2) (1,3) (2,1) (2,2)

Graphite/epoxy

[0�/90�] 1/100 7.7481 (4) 20.933 (2) 44.083 (4) 20.933 (2) 30.934 (4)

1/50 7.7335 (4) 20.817 (4) 43.560 (4) 20.817 (4) 30.704 (4)

1/10 7.3126 (4) 17.990 (4) 33.307 (4) 17.990 (4) 25.509 (4)

1/5 6.3773 (4) 13.679 (4) 22.523 (4) 13.679 (4) 18.597 (4)

[0�/90�/0�] 1/100 11.031 (2) 18.001 (3) 32.472 (4) 39.557 (2) 43.895 (3)

1/50 10.974 (3) 17.910 (4) 32.236 (4) 38.744 (3) 43.017 (4)

1/10 9.5483 (4) 15.681 (4) 26.862 (4) 25.873 (4) 29.378 (4)

1/5 7.3445 (4) 12.226 (4) 19.667 (4) 16.164 (4) 19.098 (4)

E-glass/epoxy

[0�/90�] 1/100 14.457 (2) 37.001 (3) 75.266 (4) 37.001 (3) 57.758 (2)

1/50 14.440 (2) 36.885 (4) 74.789 (4) 36.885 (4) 57.480 (4)

1/10 13.916 (4) 33.765 (4) 63.611 (4) 33.765 (4) 50.541 (4)

1/5 12.635 (4) 27.865 (4) 47.659 (4) 27.865 (4) 39.429 (4)

[0�/90�/0�] 1/100 15.164 (2) 33.697 (2) 65.658 (3) 43.960 (3) 60.572 (3)

1/50 15.143 (2) 33.607 (3) 65.329 (3) 43.769 (3) 60.246 (3)

1/10 14.532 (4) 31.133 (4) 57.209 (4) 38.839 (4) 52.267 (4)

1/5 13.067 (4) 26.200 (4) 44.395 (4) 30.512 (4) 40.022 (4)

Leissa and Narita

(1989)

15.193 33.773 65.835 44.054 60.770
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fiber-dominated material (E-glass/epoxy). Both the materials, that are considered as transversely isotro-
pic, were adopted as reasonable mean values among the suggested ones by the specialized literature

Table 7

First frequency parameters, x�, of cross-ply circular cylindrical laminates (L1=R1 ¼ L2=R1 ¼ 0:2) for different h=L1 ratios

h=L1 ðm; nÞ
(1,1) (1,2) (1,3) (2,1) (2,2)

Graphite/epoxy

[0�/90�] 1/100 14.595 (2) 30.991 (4) 53.250 (4) 21.814 (2) 33.319 (4)

1/50 9.8936 (2) 23.643 (4) 45.838 (4) 21.080 (3) 31.341 (4)

1/10 7.4412 (4) 18.129 (4) 33.411 (5) 18.116 (4) 25.671 (4)

1/5 6.4599 (4) 13.761 (5) 22.593 (5) 13.800 (4) 18.736 (4)

[0�/90�/0�] 1/100 16.487 (2) 29.763 (2) 45.888 (4) 39.889 (2) 45.532 (3)

1/50 12.527 (2) 21.435 (4) 36.036 (4) 38.785 (3) 43.396 (3)

1/10 9.5743 (4) 15.807 (4) 27.004 (4) 25.839 (4) 29.365 (4)

1/5 7.3314 (4) 12.246 (4) 19.699 (4) 16.144 (4) 19.086 (4)

E-glass/epoxy

[0�/90�] 1/100 28.770 (2) 54.975 (3) 88.091 (4) 38.709 (3) 62.876 (3)

1/50 19.035 (2) 41.826 (3) 77.726 (4) 37.381 (4) 58.803 (4)

1/10 14.133 (4) 33.923 (4) 63.645 (4) 33.876 (4) 50.713 (4)

1/5 12.728 (4) 27.939 (4) 47.695 (4) 27.994 (4) 39.594 (4)

[0�/90�/0�] 1/100 29.039 (2) 54.679 (3) 83.262 (3) 45.029 (3) 65.402 (3)

1/50 19.521 (3) 39.874 (3) 70.130 (4) 43.990 (2) 61.444 (3)

1/10 14.677 (3) 31.375 (4) 57.396 (4) 38.794 (4) 52.268 (4)

1/5 13.068 (4) 26.244 (4) 44.438 (4) 30.473 (4) 40.000 (4)

Table 8

First frequency parameters, x�, of cross-ply spherical laminates (L1=R1 ¼ L2=R1 ¼ 0:2) for different h=L1 ratios

h=L1 ðm; nÞ
(1,1) (1,2) (1,3) (2,1) (2,2)

Graphite/epoxy

[0�/90�] 1/100 25.882 (2) 35.453 (2) 55.201 (4) 36.051 (3) 39.576 (2)

1/50 14.540 (3) 25.090 (4) 46.305 (4) 25.534 (4) 33.041 (4)

1/10 7.6554 (4) 18.048 (4) 33.228 (5) 18.264 (4) 25.575 (4)

1/5 6.4429 (4) 13.637 (4) 22.448 (5) 13.779 (4) 18.603 (4)

[0�/90�/0�] 1/100 26.915 (2) 34.673 (2) 48.500 (3) 48.324 (2) 50.267 (3)

1/50 16.424 (2) 23.199 (4) 36.872 (4) 41.083 (3) 44.668 (4)

1/10 9.7894 (4) 15.894 (4) 27.039 (4) 25.953 (4) 29.426 (4)

1/5 7.3922 (4) 12.268 (4) 19.707 (4) 16.180 (4) 19.104 (4)

E-glass/epoxy

[0�/90�] 1/100 51.798 (2) 63.052 (3) 90.971 (4) 64.861 (3) 76.214 (3)

1/50 28.722 (2) 44.470 (4) 78.421 (4) 45.761 (4) 62.561 (4)

1/10 14.694 (4) 33.889 (4) 63.459 (4) 34.280 (4) 50.709 (4)

1/5 12.802 (4) 27.799 (4) 47.493 (4) 28.051 (4) 39.454 (4)

[0�/90�/0�] 1/100 51.843 (2) 63.500 (3) 86.851 (4) 66.695 (3) 78.262 (3)

1/50 29.011 (2) 43.001 (3) 71.185 (4) 50.382 (3) 65.078 (3)

1/10 15.272 (3) 31.517 (4) 57.422 (4) 39.081 (4) 52.427 (4)

1/5 13.225 (4) 26.277 (4) 44.439 (4) 30.555 (4) 40.046 (4)
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(e.g. Tsai and Hahn, 1980; Christensen and Zywicz, 1990; Roy and Tsai, 1992; Kelly et al., 1994; Philippidis
and Theocaris, 1994; Yuan and Hsieh, 1998; Chao and Chern, 2000; Vinson and Sierakowski, 2002).

Table 9

First frequency parameters, x�, of cross-ply saddle-shape laminates (R2 ¼ �R1, L1=R1 ¼ L2=R1 ¼ 0:2) for different h=L1 ratios

h=L1 ðm; nÞ
(1,1) (1,2) (1,3) (2,1) (2,2)

Graphite/epoxy

[0�/90�] 1/100 7.6913 (4) 26.971 (4) 51.394 (4) 26.971 (4) 30.917 (2)

1/50 7.6898 (4) 22.411 (4) 45.371 (4) 22.411 (4) 30.738 (4)

1/10 7.3607 (4) 18.180 (4) 33.558 (4) 18.180 (4) 25.773 (4)

1/5 6.4823 (4) 13.858 (4) 22.716 (5) 13.858 (4) 18.854 (4)

[0�/90�/0�] 1/100 10.937 (2) 25.251 (3) 43.381 (3) 42. 847 (2) 43.801 (3)

1/50 10.880 (2) 19.918 (3) 35.234 (4) 39.528 (3) 42.925 (4)

1/10 9.4666 (4) 15.706 (4) 26.944 (4) 25.846 (4) 29.316 (4)

1/5 7.2823 (4) 12.206 (4) 19.674 (4) 16.133 (4) 19.060 (4)

E-glass/epoxy

[0�/90�] 1/100 14.331 (2) 47.702 (3) 85.356 (3) 47.702 (3) 57.664 (3)

1/50 14.324 (3) 39.580 (4) 77.018 (4) 39.580 (4) 57.429 (4)

1/10 13.884 (4) 33.893 (4) 63.756 (4) 33.893 (4) 50.742 (4)

1/5 12.676 (4) 28.016 (4) 47.848 (4) 28.016 (4) 39.701 (4)

[0�/90�/0�] 1/100 15.022 (3) 46.591 (3) 79.830 (3) 53.196 (3) 60.430 (3)

1/50 15.001 (2) 37.175 (3) 69.090 (4) 46.177 (3) 60.104 (4)

1/10 14.396 (3) 31.188 (4) 57.307 (4) 38.850 (4) 52.145 (4)

1/5 12.945 (4) 26.159 (4) 44.395 (4) 30.462 (4) 39.930 (4)

Table 10

First frequency parameters, x�, of cross-ply laminates for different h=L1 and L1=R1 ratios (m ¼ n ¼ 1; graphite/epoxy)

h=L1 (L1=R1 ¼ L2=R1)

0.02 0.2 0.5 1

R2 ¼ 1 (cylindrical)

[0�/90�] 1/10 7.3190 (4) 7.4412 (4) 7.8913 (4) 9.1606 (4)

1/5 6.3853 (4) 6.4599 (4) 6.5956 (4) 6.8474 (4)

[0�/90�/0�] 1/10 9.5486 (4) 9.5743 (4) 9.7087 (4) 10.167 (4)

1/5 7.3444 (4) 7.3314 (4) 7.2653 (4) 7.0675 (4)

R2 ¼ R1 (spherical)

[0�/90�] 1/10 7.3161 (4) 7.6554 (4) 9.1996 (4) 12.901 (4)

1/5 6.3780 (4) 6.4429 (4) 6.7689 (4) 7.7346 (4)

[0�/90�/0�] 1/10 9.5508 (4) 9.7894 (4) 10.930 (4) 13.917 (3)

1/5 7.3450 (4) 7.3922 (4) 7.6316 (4) 8.3602 (4)

R2 ¼ �R1 (saddle-shape)

[0�/90�] 1/10 7.3232 (4) 7.3607 (4) 7.1859 (4) 6.2893 (4)

1/5 6.3926 (4) 6.4823 (4) 6.4275 (4) 5.7726 (4)

[0�/90�/0�] 1/10 9.5475 (4) 9.4666 (4) 9.0509 (4) 7.7243 (4)

1/5 7.3439 (4) 7.2823 (4) 6.9659 (4) 5.9585 (4)
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The material constants of graphite/epoxy and E-glass/epoxy correspond to the values adopted by Chris-

tensen and Zywicz (1990) and Chao and Chern (2000), respectively.

Based on the three-dimensional investigations conducted by Huang (1995), which can be taken into

account in this work, Tables 2–4 have been set up as an initial test in the cases of cylindrical, spherical and
saddle-shape laminates. Tables 2–4 consider certain laminates that are constructed regularly in the sequence

½0�=90� . . .
 with equal layer thickness. The frequency parameters (x�) presented in these Tables have to be

considered as being obtained by the numerical codes when the convergence for the first five significant

figures was achieved. In this respect the corresponding numbers in brackets indicate the number of func-

tional components needed in order to reach the convergence. A perusal of Tables 2–4 highlights that an

increasing number of layers gets the convergence with a decreasing order of functional components (N ).

This aspect seems to be independent from the particular geometry investigated. It can be justified by the

reduction of the thickness for each layer which, requires a through-thickness distribution of stress and
displacement quantities with an increasing resemblance to piecewise linear trends.

In Tables 2–4 an excellent coincidence can be observed between the results obtained by the present two-

dimensional model and the three-dimensional investigation conducted by Huang (1995). In particular, in

Tables 2 and 3 the coincidence applies to five significant figures for the majority of the numerical results.

Table 4 illustrates a less favorable comparison but still excellent. Moreover, as far as Table 4 is concerned, it

is interesting to note that the present two-dimensional model achieves the convergence at the same nu-

merical value when ðm; nÞ is equal to ð1; 2Þ or ð2; 1Þ for an even number of layers. While this result is

physically compatible with the geometry and the layout considered, Huang (1995) evaluated the same
relevant values with a slight discrepancy. This would suggest that the results presented through the present

model could be slightly more accurate than the results presented by Huang (1995).

A second test that deserves attention corresponds to the numerical evaluation reported in Table 5. In

Table 5 a convergence test is illustrated in conjunction with the comparison of the three-dimensional

analysis conducted by Ye and Soldatos (1994) and Wu et al. (1996). Table 5 highlights the extreme stability

of the present two-dimensional model. Indeed, all the frequency parameters achieved the convergence on

the first six significant figures with N ¼ 4. Such a convergence is also illustrated up to the first eight figures

in a part of the results only to illustrate the efficiency and stability of the method. The comparison with
three-dimensional analysis can be considered excellent, particularly with the analysis conducted by Soldatos

(1994) for which four or five significant figures are exactly corresponding.

Based on the more than encouraging numerical comparisons illustrated in Tables 2–5, Tables 6–10 have

been set up to provide the literature with new results.

In particular, Tables 6–10 illustrate frequency parameters related to laminated plates and shells which

have different geometrical shapes and an even and odd number of layers. All the frequency parameters

listed in Tables 6–10 are shown with the needed number of functional components (N ). Such a number in

parenthesis corresponds to the lowest number of functional components (incremented by a unitary step)
between two subsequent frequency parameters identically evaluated with the first rounded five significant

digits. This choice was retained important in order to compare future alternative models with the per-

formances of the present model also from a computational point of view.

Table 6, that deals with freely vibrating multilayered plates was obtained as a particular case of shell by

simply settling 1=R1 ¼ 1=R2 ¼ 0. This table also illustrates that values from the classical plate theory (Leissa

and Narita, 1989) are naturally obtained when the thickness of the plate decreases and becomes consi-

derably smaller than a representative length (L1). This does not apply for thicker plates for which the

frequency parameters considerably change.
The numerical evaluations shown in Tables 6–9 illustrate how the convergence ratio can depend on the

particular material and geometry considered. Indeed, a slower convergence can be observed for higher

frequencies when curved shells (in particular cylindrical and spherical), made up of graphite/epoxy material,

are taken into account. However, such a dependence of the convergence rate should not be considered
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remarkably significant. Indeed, when the convergence was obtained with N ¼ 5 the frequency parameter

corresponding to N ¼ 4 already had four stable significant digits.

Moreover, it is interesting to notice that Tables 6–9 have a feature in common: as the shells become

thicker the frequency parameters, corresponding to an identical stacking pattern, become similar regardless
of the different material or shape of the middle plane (for example, for h=L1 ¼ 1=5, an even number of

layers, graphite/epoxy laminates and ðm; nÞ ¼ ð2; 2Þ: x� ¼ 18:597, 18.736, 18.603, 18.804 correspond to

plane, cylindrical, spherical and saddle-shape laminates, respectively). The high thickness of the laminate

tends to reduce the effect of the curvatures of the shells, which is, however, more dominant for thinner

shells. This interpretation is confirmed in Table 10 that, besides providing new results, illustrates the be-

havior of frequency parameters ðm; n ¼ 1; 1Þ versus increasing L1;2=R1;2 ratios. In this table it can be noticed

that for L1;2=R1;2 ¼ 0:02 the relevant frequency parameters are coincident with the first two significant

digits, whilst for increasing L1;2=R1;2 ratios this coincidence decreases with a more remarkable trend for
h=L1 ¼ 10.

5. Closure

In the frame of free vibrations analysis this paper has presented a two-dimensional theory that is able to

achieve an arbitrary accuracy for the modelling of laminated doubly curved shells made of monoclinic

elastic layers placed in a general, arbitrary, stacking pattern. This constitutes a further generalization of a

recent theory (Messina, 2002a) that concerned freely vibrating plates.
The theory has been developed on the base of one of Reissner�s variational theorems (Reissner, 1986).

Assuming the doubly curved shell is virtually made from a single layer, this paper has developed the model,

thus establishing a refined global theory. Such a global characteristic has been made possible by leaving the

task of fulfilling internal and external boundary conditions (in the thickness-direction) to certain global

approximating functions, which can be chosen independently from the theoretical model.

In this work a recent set of independent functions (GPSFs) (Messina, 2002a) was used as global ap-

proximating functions in the numerical simulations for testing the theoretical model (M3D). An extensive

number of comparisons was carried out on different geometries, material and layout arrangements. The
comparisons clearly showed that the present two-dimensional model can efficiently challenge three-

dimensional (exact and approximated ones) analysis, thus also being obviously superior to well known

previous global theories (CPT, FSDST and HSDST).

Due to the fact that the GPSFs here used do not have an exclusive right in the developed theoretical

model, it would be interesting to leave further investigations open on the suitability of other independent

functions that could even improve the convergence rate of the model. Care should be taken for dealing with

functional bases that are compatible with external and internal boundary conditions. Finally, since the

theoretical model, tested for a class of simply supported boundary conditions and for certain geometries
and materials, showed an evident three-dimensional performance it would be interesting to extend the

analysis in order to provide the literature with relevant new three-dimensional results. In this respect, the

new values added to the literature for several geometrical and material characteristics of shells should be

of relevant value.
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Appendix A
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Z h=2

�h=2
Q11
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h1
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1 dzþ B
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Q12U1U

T
2 dzþ B
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33;

C13 ¼
Z h=2

�h=2
Q16U1U
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ðA:1Þ
where Qij are the piecewise continuous reduced stiffnesses (Whitney, 1987) and ðU1;U2;U3Þ are vectors

assembled with the ordered global approximating functions ðUðzÞ1j;UðzÞ2j;UðzÞ3jÞ, respectively. The

transverse stress components are related to the displacement components through the following equation:

s ¼ G � Bu � �uuþG � Bv � �vvþG � Bw � �w;w; ðA:2Þ
where the stress and displacement vectors correspond to the following terms:

s ¼ ðs2z1; . . . ; s2zNr; s1z1; . . . ; s1zNr; rz1; . . . ;rzNrÞT;
�uu ¼ ðu1; . . . ; uNu; u1;a1=A1; . . . ; uNu;a1=A1; u1;a2=A2; . . . ; uNu;a2=A2ÞT;
�vv ¼ ðv1; . . . ; vNu; v1;a1=A1; . . . ; vNu;a1=A1; v1;a2=A2; . . . ; vNu;a2=A2ÞT;
�ww ¼ ðw1; . . . ;wNu;w1;a1=A1; . . . ;wNu;a1=A1;w1;a2=A2; . . . ;wNu;a2=A2ÞT

ðA:3Þ
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and the sub-matrices ðG;Bu;Bv;BwÞ that are constituted as follows:
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; ðA:4Þ

A11 ¼
Z h=2

�h=2
h1h2E11 �

W11W11 . . . W11W1Nr

..

. . .
. ..

.

W1NrW11 . . . W1NrW1Nr

2
64

3
75dz; A12 ¼

Z h=2

�h=2
h1h2E12 �

W21W11 . . . W2NrW11

..

. . .
. ..

.

W21W1Nr . . . W2NrW1Nr

2
64

3
75dz;

A22 ¼
Z h=2

�h=2
h1h2E22 �

W21W21 . . . W21W2Nr

..

. . .
. ..

.

W2NrW21 . . . W2NrW2Nr

2
64

3
75dz; A33 ¼

Z h=2

�h=2
h1h2E33 �

W31W31 . . . W31W3Nr

..

. . .
. ..

.

W3NrW31 . . . W3NrW3Nr

2
64

3
75dz:

8>>>>>>>><
>>>>>>>>:

ðA:5Þ

Bu ¼
0 0 0

Bu
211 þ Bu

212 0 0

0 Bu
32 Bu

33

2
4

3
5; Bv ¼

Bv
111 þ Bv

112 0 0
0 0 0

0 Bv
32 Bv

33

2
4

3
5; Bw ¼

0 0 Bw
13

0 Bw
22 0

Bw
311 þ Bw

312 þ Bw
313 0 0

2
4

3
5;

ðA:6Þ
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with the compliance coefficients ðE11;E12;E22;E33Þ and the dimensionless coefficients ðF31; F32; F33Þ that

correspond to ððC345Þ�1

11 ; ðC345Þ�1

12 ; ðC345Þ�1

22 ; ðC345Þ�1

33 Þ and ðC13=C33;C23=C33;C36=C33Þ, respectively.
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